1. 小视频教程 > 知识库 >

行列式的计算方法,行列式的计算技巧与方法总结

本文目录索引

1,行列式的计算技巧与方法总结

2 -2 4 6 1 1 3 2 -1 3 0 4 2 2 4 1 第1行交换第2行- 1 1 3 2 2 -2 4 6 -1 3 0 4 2 2 4 1 第2行,第3行,第4行, 加上第1行×-2,1,-2- 1 1 3 2 0 -4 -2 2 0 4 3 6 0 0 -2 -3 第3行, 加上第2行×1- 1 1 3 2 0 -4 -2 2 0 0 1 8 0 0 -2 -3 第4行, 加上第3行×2- 1 1 3 2 0 -4 -2 2 0 0 1 8 0 0 0 13 主对角线相乘52

行列式的计算技巧与方法总结

2,线性代数行列式的计算有什么技巧吗?

线性代数行列式有如下计算技巧: 1、行列式A中某行(或列)用同一数k乘,其结果等于kA。 2、行列式A等于其转置行列式AT(AT的第i行为A的第i列)。 3、若n阶行列式|αij|中某行(或列);行列式则|αij|是两个行列式的和,这两个行列式的第i行(或列),一个是b1,b2,…,bn;另一个是с1,с2,…,сn;其余各行(或列)上的元与|αij|的完全一样。 4、行列式A中两行(或列)互换,其结果等于-A。 ⑤把行列式A的某行(或列)中各元同乘一数后加到另一行(或列)中各对应元上,结果仍然是A。 线性代数行列式在数学中,是一个函数,其定义域为det的矩阵A,取值为一个标量,写作det(A)或 | A | 。无论是在线性代数、多项式理论,还是在微积分学中(比如说换元积分法中),行列式作为基本的数学工具,都有着重要的应用。 扩展资料: 线性代数重要定理: 1、每一个线性空间都有一个基。 2、对一个 n 行 n 列的非零矩阵 A,如果存在一个矩阵 B 使 AB = BA =E,则 A 为非奇异矩阵(或称可逆矩阵),B为A的逆阵。 3、矩阵非奇异(可逆)当且仅当它的行列式不为零。 4、矩阵非奇异当且仅当它代表的线性变换是个自同构。 5、矩阵半正定当且仅当它的每个特征值大于或等于零。 6、矩阵正定当且仅当它的每个特征值都大于零。 7、解线性方程组的克拉默法则。 8、判断线性方程组有无非零实根的增广矩阵和系数矩阵的关系。 注:线性代数被广泛地应用于抽象代数和泛函分析中;通过解析几何,线性代数得以被具体表示。线性代数的理论已被泛化为算子理论。由于科学研究中的非线性模型通常可以被近似为线性模型,使得线性代数被广泛地应用于自然科学和社会科学中。 参考资料来源:百度百科-行列式 参考资料来源:百度百科-线性代数

3,行列式怎么计算的

我没有数学软件,就将解题的过程用文字说明一下吧。
(1)n
阶行列式的主对角元素为
1

n,其他元素均为
2
,于是该行列式第二行的数字都是2。根据行列式得性质可以将行列式第二行提取公因子2
,于是行列式第二行都变成
1,行列式外的系数为
2。
(2)为了化简新的行列式,我们将第二行乘以
-2
分别加到其他各行上,于是除第二行之外,其他所有行的
2
都变成了
0
,主对角线上的元素数字分别减少了2
,变成了
-1,1,1,2,3,4,……,n-3,n-2

最后一行的主对角线元素边成了
n-2

(3)现在的行列式除了第二行全是
1
,其他各行除了主对角线上的元素之外都是
0
,为了计算该行列式的值,将行列式按第一行进行展开
。第一行除了第一个元素是
-1
,其他都是
0
,因此只计算第一个元素的代数余子式即可。于是结果变成
-2乘以一个
n-1
阶行列式的形式,这个
n-1
阶的行列式第一行的元素都是1
,其他各行除了主对角线上的元素不等于
0
,其他元素都是
0
,且从第二行开始的主对角元素分别是
1,2,3,4,……
,n-3
,n-2

(4)新的
n-1
阶行列式为典型的三角行列式,其数值为主对角线各元素的乘积,即
(n-2)!
(此处表示的是
n-2
的阶乘)
(5)最终的结果是
-2*[(n-2)!]

4,三阶行列式的计算方法

标准方法是在已给行列式的右边添加已给行列式的第一列、第二列。我们把行列式的左上角到右下角的对角线称为主对角线,把右上角到左下角的对角线称为次对角线。这时,三阶行列式的值等于主对角线的三个数的积与和主对角线平行的三个对角线上的数的积的和减去次对角线的三个数的积与和次对角线平行的对角线上三个数的积的和的差。

5,三阶行列式 的计算公式

三阶行列式可用对角线法则: D = a11a22a33 + a12a23a31 + a13a21a32- a13a22a31 - a12a21a33 - a11a23a32。 矩阵A乘矩阵B,得矩阵C,方法是A的第一行元素分别对应乘以B的第一列元素各元素,相加得C11,A的第一行元素对应乘以B的第二行各元素,相加得C12,C的第二行元素为A的第二行元素按上面方法与B相乘所得结果,N阶矩阵都是这样乘,A的列数要与B的行数相等。 a1*(a1的余子式)-b1*(b1的余子式)+c1*(c1的余子式): 某个数的余子式是指删去那个数所在的行和列后剩下的行列式。 行列式的每一项要求:不同行不同列的数字相乘。 如选了a1则与其相乘的数只能在2,3行2,3列中找,(即在 b2 b3 c2c3中找)。 而a1(b2·c3-b3·c2) - a2(b1c3-b3·c1) + a3(b1·c2-b2·c1)是用了行列式展开运算:即行列式等于它第一行的每一个数乘以它的余子式,或等于第一列的每一个数乘以它的余子式,然后按照 + - + - + -......的规律给每一项添加符号之后再做求和计算。 以上内容参考:百度百科-三阶行列式

6,行列式有什么计算方法呢?

一 化成三角形行列式法

先把行列式的某一行(列)全部化为 1 ,再利用该行(列)把行列式化为三角形行列式,从而求出它的值,这是因为所求行列式有如下特点: 1 各行元素之和相等; 2 各列元素除一个以外也相等。

充分利用行列式的特点化简行列式是很重要的。

二 降阶法

根据行列式的特点,利用行列式性质把某行(列)化成只含一个非零元素,然后按该行(列)展开。展开一次,行列式降低一阶,对于阶数不高的数字行列式本法有效。

三 拆成行列式之和(积)

把一个复杂的行列式简化成两个较为简单的。

四 利用范德蒙行列式

根据行列式的特点,适当变形(利用行列式的性质——如:提取公因式;互换两行(列);一行乘以适当的数加到另一行(列)去; ...) 把所求行列式化成已知的或简单的形式。其中范德蒙行列式就是一种。这种变形法是计算行列式最常用的方法。

五 数学归纳法

当 与 是同型的行列式时,可考虑用数学归纳法求之。

六 逆推法

建立起 与 的递推关系式,逐步推下去,从而求出 的值。

有时也可以找到 与 , 的递推关系,最后利用 ,

得到 的值。

七 加边法

要求:1 保持原行列式的值不变; 2 新行列式的值容易计算。根据需要和原行列式的特点选取所加的行和列。加边法适用于某一行(列)有一个相同的字母外,也可用于其第 列(行)的元素分别为 n-1 个元素的倍数的情况。

八 综合法

计算行列式的方法很多,也比较灵活,总的原则是:充分利用所求行列式的特点,运用行列式性质及上述常用的方法,有时综合运用以上方法可以更简便的求出行列式的值;有时也可用多种方法求出行列式的值。

九 行列式的定义

一般情况下不用。

7,行列式的计算方法总结

第一、行列式的计算利用的是行列式的性质,而行列式的本质是一个数字,所以行列式的变化都是建立在已有性质的基础上的等量变化,改变的是行列式的“外观”。 第二、行列式的计算的一个基本思路就是通过行列式的性质把一个普通的行列式变化成为一个我们可以口算的行列式(比如,上三角,下三角,对角型,反对角,两行成比例等)。 第三、行列式的计算最重要的两个性质: 1、对换行列式中两行(列)位置,行列式反号。 2、把行列式的某一行(列)的倍数加到另一行(列),行列式不变。 行列式的性质 1、行列式A中某行(或列)用同一数k乘,其结果等于kA。 2、行列式A等于其转置行列式AT(AT的第i行为A的第i列)。 3、若n阶行列式|αij|中某行(或列);行列式则|αij|是两个行列式的和,这两个行列式的第i行(或列),一个是b1,b2,…,bn;另一个是с1,с2,…,сn;其余各行(或列)上的元与|αij|的完全一样。 4、行列式A中两行(或列)互换,其结果等于-A。 ⑤把行列式A的某行(或列)中各元同乘一数后加到另一行(或列)中各对应元上,结果仍然是A。