1. 小视频教程 > 知识库 >

费马最后定理,费马最后定理的内容是什么?

本文目录索引

1,费马最后定理的内容是什么?

费马原理最早由法国科学家皮埃尔·德·费马在1660年提出,又名“最短光时”原理.费马原理:光沿着所需时间为平稳的路径传播.(所谓的平稳是数学上的变分概念,可以简单理解为一阶导数为零,它可以是极大值、极小值甚至是拐点.多数情况是极小值.宇宙学中指的时空透镜就是极大值,椭圆状镜面的表面则是拐点.) 光程s=n l(n 为光所在介质的折射率,l为几何路程) 又因为 n=c/v 和 l=vt 所以得到 s=ct.由此可见,光在某种介质中的光程等于同一时间内光在真空中所走的几何路程.费马原理指出,光从一点传播到另一点,其间无论经过多少次折射和反射,光程为极值.也就是说,光是沿着光程为极值(极大值、极小值或常量)的路径传播的.

费马最后定理的内容是什么?

2,费尔马小定理是什么?

17世纪时,有个法国律师叫费尔马。他非常喜欢数学,常常利用业余时间研究高深的数学问题,结果取得了很大的成就,被人称为“业余数学家之王”。


费尔马研究数学时,不喜欢搞证明,喜欢提问题。他凭借丰富的想像力和深刻的洞察力,提出了一系列重要的数学猜想,深刻地影响了数学的发展。他提出了“费尔马大定理”,几百年来吸引了无数的数学家,是一个至今尚未完全解决的著名数学难题。


费尔马最喜欢的数学分支是数论。他曾深入研究过质数的性质。1640年,他发现了一个有趣的现象:


当n=1时,22n+1=221+1=5;


当n=2时,22n+1=222+1=17;


当n=3时,22n+1=223+1=257;


当n=4时,22n+1=224+1=65537;


费尔马没有继续算下去,他猜测说:只要n是自然数,由这个公式算出的数一定都是质数。


这是一个很有名的猜想。由于演算起来很麻烦,很少有人去验证它。1732年,大数学家欧拉认真研究了这个问题。他发现,费尔马只要往下演算一个自然数,就会发现由这个公式算出的数不全是质数。


n=5时,22n+1=225+1=4294967297,


4294967297可以分解成641×6700417,它不是质数。也就是说,费尔马的这个猜想不能成为一个求质数的公式。


实际上,几千年来,数学家们一直在寻找这样一个公式,一个能求出所有质数的公式。但直到现在,谁也未能找到这样一个公式。而且谁也未能找到证据,说这样的公式就一定不存在。这样的公式究竟存在不存在,也就成了一个著名的数学难题。


费尔马有心找出一个求质数的公式,结果未能成功,人们发现,倒是他无意提出的另一个猜想,对寻找质数很有用处。


费尔马猜测说:如果P是一个质数,那么,对于任何自然数n,np-n一定能够被P整除。这一回,费尔马猜对了。这个猜想被人称做费尔马小定理。例如11是质数,2是自然数,所以211-2一定能被11整除。


如果反过来问:若n能够整除2n-2,n是否一定就是质数呢?


答案是否定的。但人们发现,由这个公式算出的数绝大多数是质数。有人统计过,在1010以内,只要n能整除(2n-2),则n有99.9967%的可能是质数。这样,只要能剔除为数极少的冒牌质数,鉴定一个数是不是质数也就不难了。


利用费尔马小定理,这是目前最有效的鉴定质数的方法。要判断一个数的n是不是质数,首先看它能不能被(2n-2)整除,如果不能整除,它一定是合数;如果能整除,它就极有可能是质数。有消息说,在电子计算机上运用这种新方法,要鉴定一个上百位的数是不是质数,一般只要15秒钟就够了。

3,什么是费尔马大定理?

1637年,费尔马在阅读丢番图《算术》时研究了不定方程x2+y2=z2,在那页书的空白处作了批注:“将一个立方数分为两个立方数,一个四次幂分为两个四次幂,或者一般地将一个高于二次的幂分为两个同次幂,这是不可能的。关于此,我发现了一种绝妙的证明,可是这里空白太小写不下。”费尔马没有想到,因为他的随意,留下了几百年来数学界一道难题,成为费尔马大定理。

4,“费马定理”包括什么内容?

在数论方面,最为世人熟识的当然是费马最后定理(Fermat's Last Theorem),但其实还有很重要的费马小定理(Fermat's Little Theorem,加上“小”是用来分别费马大定理的),以及费马二平方数定理(Fermat's Two Squares Theorem),无限下降法和费马数等等,实在是多不胜数。


费马大定理 ,即:不可能有满足 xn+yn=zn ,n >2的正整数x、y、z、n存在。这命题他写在丢番图《算术》( 拉丁文译本,1621)第 2卷的空白处:“……将一个高于二次的幂分成两个同次幂之和,这是不可能的。



费马小定理是数论中的一个定理。定理:(费马小定理) 当p是素数时,对於任意一个整数a不是p的倍数时,有以下的等式 ap-1≡1 (mod p)。
费马最后定理
当整数 n > 2 时,
方程 x n + y n = z n 无正整数解.
勾股定理及勾股数组
勾股定理 在 ABC 中,若 C 为直角,则 a2 + b2 = c2.
留意:32 + 42 = 52; 52 + 122 = 132;
82 + 152 = 172; 72 + 242 = 252; ……等等
即 (3 , 4 , 5),(5 , 12 , 13) … 等等为方程
x 2 + y 2 = z 2 的正整数解.
我们称以上的整数解为「勾股数组」.

5,什么是费马定律

光学基础知识:光的反射、折射、衍射
光的传播可以归结为三个实验定律:直线传播定律、反射定律和折射定律。

【光的直线传播定律】:光在均匀介质中沿直线传播。

在非均匀介质种光线将因折射而弯曲,这种现象经常发生在大气中,比如海市蜃楼现象,就是由于光线在密度不均匀的大气中折射而引起的。

【费马定律】:当一束光线在真空或空气中传播时,由介质1投射到与介质2的分界面上时,在一般情况下将分解成两束光线:反射(reflection)光线和折射(refraction)光线。

光线的反射

光线的反射取决于物体的表面性质。

如果物体表面(反射面)是均匀的,类似镜面一样(称为理想的反射面),那么就是全反射,将遵循下列的反射定律,也称“镜面反射”。

入射光线、反射光线和折射光线与界面法线在同一平面里,所形成的夹角分别称为入射角、反射角和折射角。

【反射定律】:反射角等于入射角。i = i'

对于理想的反射面而言,镜面表面亮度取决于视点,观察角度不同,表面亮度也不同。
当反射面不均匀时,将发生漫反射。其特点是入射光线与反射光线不满足反射定律。

一个理想的漫射面将入射光线在各个方向做均匀反射,其亮度与视点无关,是个常量。

光线的折射

一些透明/半透明物体允许光线全部/部分地穿透它们,这种光线称为透射光线。

当光线从一种介质(比如空气)以某个角度(垂直情形除外)入射到另外一种具有不同光学性质的介质(比如玻璃镜片)中时,其界面方向会改变,就是会产生光线的折射现象。

光的折射是由于光在不同介质的传播速度不同而引起的。

光线折射满足下列折射定律:入射角的正弦与折射角的正弦之比与两个角度无关,仅取决于两种不同介质的性质和光的波长,

【折射定律】:n1 sin i = n2 sin r

任何介质相对于真空的折射率,称为该介质的绝对折射率,简称折射率(Index of refraction)。对于一般光学玻璃,可以近似地认为以空气的折射率来代替绝对折射率。公式中n1和n2分别表示两种介质的折射率。

当n1 = -n2时,折射定律就是变成反射定律了,所以反射定律可以看成是折射定律的特例。
折射率:光在两种介质种的传播速度之比,即

n2/n1 = v1/v2

一种介质的绝对折射率为

n = c/v

式中c是真空中光的速度,v为该介质中光的速度。

可以看出:在折射率较大的介质中,光的速度比较低;在折射率较小的介质中,光的速度比较高。

作为实验规律,上述几何光学三定律只是在波长λ很小的条件下才近似成立的。在摄影中,用几何光学来描述已经足够精确了。

6,什么是费马大定律

费尔马大定律就是对于方程a^3+b^3=c^3来说,a,b,c没有非零整数解。这个猜想是费尔马最先提出来的,所以叫费尔马大定理。费尔马是17世纪初的一位业余数学家,他的本职工作是律师,这是在他的笔记中发现的,他自称想到了一个很巧妙的办法来证明这个定理,但是人们没有发现他证明的手稿,这个问题困扰了人类近300年,最近才有人给出证明,而且这个证明相当长,号称数学家都不一定全可以看懂,这个人最近到过北京大学去作演讲。叫怀尔斯