反函数怎么求,如何求反函数,有什么公式
本文目录索引
1,如何求反函数,有什么公式
一、判断反函数是否存在: 由反函数存在定理:严格单调函数必定有严格单调的反函数,并且二者单调性相同: 1、先判读这个函数是否为单调函数,若非单调函数,则其反函数不存在。 设y=f(x)的定义域为D,值域为f(D)。如果对D中任意两点 x₁ 和 x₂ ,当 x₁y₂,则称 y=f(x) 在D上严格单调递减。 2、再判断该函数与它的反函数在相应区间上单调性是否一致; 满足以上条件即反函数存在。 二、具体求法: 例如 求 y=x^2 的反函数。 x=±根号y,则 f(x) 的反函数是正负根号 x,求完后注意定义域和值域,反函数的定义域就是原函数的值域,反函数的值域就是原函数的定义域。 扩展资料: 反函数存在定理 定理:严格单调函数必定有严格单调的反函数,并且二者单调性相同。 在证明这个定理之前先介绍函数的严格单调性。 设y=f(x)的定义域为D,值域为f(D)。如果对D中任意两点x1和x2,当x1y2,则称y=f(x)在D上严格单调递减。 证明:设f在D上严格单增,对任一y∈f(D),有x∈D使f(x)=y。 而由于f的严格单增性,对D中任一x'x,都有y''>y。总之能使f(x)=y的x只有一个,根据反函数的定义,f存在反函数f-1。 任取f(D)中的两点y1和y2,设y1<y2。而因为f存在反函数f-1,所以有x1=f-1(y1),x2=f-1(y2),且x1、x2∈D。 若此时x1≥x2,根据f的严格单增性,有y1≥y2,这和我们假设的y1<y2矛盾。 因此x1<x2,即当y1<y2时,有f-1(y1)<f-1(y2)。这就证明了反函数f-1也是严格单增的。 如果f在D上严格单减,证明类似。 参考资料来源:百度百科 - 反函数
2,数学上的求一个函数的反函数怎么求有哪些方法,试举几
反函数就是从函数y=f(x)中解出x,用y表示 :x=φ(y),如果对于y的每一个值,x都有唯一的值和它对应,那么x=φ(y)就是y=f(x)的反函数,习惯上,用x表示自变量,所以x=φ(y)通常写成y=φ(y) (即对换x,y的位置)。 求一个函数的反函数: 1、从原函数式子中解出 x 用 y 表示; 2、对换 x,y ; 3、标明反函数的定义域 注:反函数里的x是原函数里的y,原函数中,y≥0,所以反函数里的x≥0。在原函数和反函数中,由于交换了x、y的位置,所以原函数的定义域是反函数的值域,原函数的值域是反函数的定义域。 扩展资料: 反函数存在定理: 定理:严格单调函数必定有严格单调的反函数,并且二者单调性相同。 在证明这个定理之前先介绍函数的严格单调性。 设y=f(x)的定义域为D,值域为f(D)。如果对D中任意两点x1和x2,当x1y2,则称y=f(x)在D上严格单调递减。 证明:设f在D上严格单增,对任一y∈f(D),有x∈D使f(x)=y。 而由于f的严格单增性,对D中任一x'x,都有y''>y。总之能使f(x)=y的x只有一个,根据反函数的定义,f存在反函数f-1。 任取f(D)中的两点y1和y2,设y1<y2。而因为f存在反函数f-1,所以有x1=f-1(y1),x2=f-1(y2),且x1、x2∈D。 若此时x1≥x2,根据f的严格单增性,有y1≥y2,这和我们假设的y1<y2矛盾。 因此x1<x2,即当y1<y2时,有f-1(y1)<f-1(y2)。这就证明了反函数f-1也是严格单增的。 如果f在D上严格单减,证明类似。
3,反函数的求法?
方程变形:
(10的x次幂-10的-X幂)=y×(10的X次幂
10的-X次幂)
10的X次幂(y-1)
10的-X次幂(y
1)=0
10的2X次幂(y-1)
y
1=0
10的2X次幂=(1
y)
/
(1-y)
x=lg[(1
y)
/
(1-y)]÷2,即
y=lg[(1
x)
/
(1-x)]÷2
②
所以所求值域就是函数②的定义域。
该函数的定义域为:(1
x)
/
(1-x)>0,解得-1<x<1
所以原函数的值域为-1<y<1
4,分数的反函数怎么求
一般来说,设函数y=f(x)(x∈A)的值域是C,若找得到一个函数g(y)在每一处g(y)都等于x,这样的函数x= g(y)(y∈C)叫做函数y=f(x)(x∈A)的反函数,记作y=f-1(x) 。 反函数y=f -1(x)的定义域、值域分别是函数y=f(x)的值域、定义域。最具有代表性的反函数就是对数函数与指数函数。 一般地,如果x与y关于某种对应关系f(x)相对应,y=f(x),则y=f(x)的反函数为x=f (y)或者y=f-1(x)。 存在反函数(默认为单值函数)的条件是原函数必须是一一对应的(不一定是整个数域内的)。注意:上标"−1"指的是函数幂,但不是指数幂。 扩展资料:相对于反函数y=f-1(x)来说,原来的函数y=f(x)称为直接函数。反函数和直接函数的图像关于直线y=x对称。这是因为,如果设(a,b)是y=f(x)的图像上任意一点,即b=f(a)。 根据反函数的定义,有a=f-1(b),即点(b,a)在反函数y=f-1(x)的图像上。 而点(a,b)和(b,a)关于直线y=x对称,由(a,b)的任意性可知f和f-1关于y=x对称。 参考资料来源:百度百科—反函数
5,如何求反函数?
1. 反函数存在的条件。对于任意一个函数y=f(x),不一定有反函数。如y=x2 (x∈R),由y=x2,解得 ,对于每一个确定的函数值y,有两个x值与之对应,不符合函数定义,所以y=x2(x∈R)没有反函数。不难发现,只有当函数y=f(x)的对应法则f是从定义域到值域的一一映射时,它才存在反函数。函数若存在反函数,它的反函数是唯一的。
2. 反函数也是函数。一个函数与它的反函数互为反函数,并且它们的定义域、值域互换,对应法则互逆。一个函数与它的反函数可以是两个不同的函数,也可以是同一个函数。如函数
3. 在反函数概念的学习中,先后出现了三个函数记号——y=f(x),x=f-1(y),y=f-1(x),它们之间的关系是:在y=f(x)与x=f-1(y)中,字母x,y所表示的数量相同,取值范围相同,但地位不同。在y=f(x)中,x是自变量,y是x的函数;在x=f-1(y)中,y是自变量,x是y的函数。y=f(x)与x=f-1(y)互为反函数,它们的图象相同(由于两式中x,y所表示的量完全相同)。
在y=f(x)与y=f-1(x)中,字母x,y的地位相同,即x是自变量,y是x的函数,但x,y表示的量的意义变换了,取值范围也互换了,即y=f(x)中x(或y)与y=f-1(x)中的y(或x)表示相同的量。y=f(x)与y=f-1(x)互为反函数,它们的图象关于直线y=x对称。
在y=f-1(x)与x=f-1(y)中,字母x,y的地位及其表示的量互相交换,但它们却是同一函数,都是y=f(x)的反函数。函数x=f-1(y)与y=f-1(x)是同一函数的理由是:它们的定义域相同,值域相同,对应法则一样。
4. 反应函数的性质主要有:
(1)互为反函数的两个函数的图象关于直线y=x对称;
(2)函数存在反函数的充要条件是,函数在它的定义域上是单调的;
(3)一个函数与它的反函数在相应区间上单调性一致;
(4)偶函数一定不存在反函数,奇函数不一定存在反函数。若一个奇函数存在反函数,则它的反函数也是奇函数;
,其中A、C分别为函数f(x)的定义域、值域。
反函数的求法。
注意不要把f-1(x)理解为 ,防止把求反函数混为求倒数。f-1(x)表示f(x)的反函数,式子中的f-1表示对应法则,它与原来函数f(x)中的对应法则是互逆的关系。求反函数的过程主要是“解方程”的过程,即将y视为常数,将x看作未知数,用解方程的方法解出x=f-1(y),此时一定要注意表达式的唯一性。再将x,y的位置交换,得y=f-1(x)。求出式子y=f-1(x)后,一般还要注明反函数的定义域。由于反函数的定义域必须与原来函数的值域相同,由式子f-1(x)确定x的取值范围未必合适(原因是在解方程的过程中,可能出现非同解变形),因此,标注反函数的定义域很有必要,而且须结合原来函数的值域确定反函数的定义域。例如,函数 的反函数的解析式为y=(x-1)2,由于原来函数的值域是y≥1,故反函数的定义域是x≥1,而不能是x∈R。求反函数的解题步骤可概括为“一解二换三注”。