1. 小视频教程 > 知识库 >

操作系统源代码,操作系统的源代码是什么东西??

本文目录索引

1,操作系统的源代码是什么东西??

源程序是指未编译的文本代码。

验证码主要是为防止暴利破解,所以需要防止图片识别。所以验证码一般情况下为书写不正规,且有随机的背景杂点,或杂线

源代码(也称源程序),是指一系列人类可读的计算机语言指令。

在现代程序语言中,源代码可以是以书籍或者磁带的形式出现,但最为常用的格式是文本文件,这种典型格式的目的是为了编译出计算机程序。计算机源代码的最终目的是将人类可读的文本翻译成为计算机可以执行的二进制指令,这种过程叫做编译,通过编译器完成。





作用 :

源代码主要功用有如下2种作用:

生成目标代码,即计算机可以识别的代码。

对软件进行说明,即对软件的编写进行说明。为数不少的初学者,甚至少数有经验的程序员都忽视软件说明的编写,因为这部分虽然不会在生成的程序中直接显示,也不参与编译。但是说明对软件的学习、分享、维护和软件复用都有巨大的好处。因此,书写软件说明在业界被认为是能创造优秀程序的良好习惯,一些公司也硬性规定必须书写。

需要指出的是,源代码的修改不能改变已经生成的目标代码。如果需要目标代码做出相应的修改,必须重新编译。





代码组合 :


源代码作为软件的特殊部分,可能被包含在一个或多个文件中。一个程序不必用同一种格式的源代码书写。例如,一个程序如果有C语言库的支持,那么就可以用C语言;而另一部分为了达到比较高的运行效率,则可以用汇编语言编写。

较为复杂的软件,一般需要数十种甚至上百种的源代码的参与。为了降低种复杂度,必须引入一种可以描述各个源代码之间联系,并且如何正确编译的系统。在这样的背景下,修订控制系统(RCS)诞生了,并成为研发者对代码修订的必备工具之一。

还有另外一种组合:源代码的编写和编译分别在不同的平台上实现,专业术语叫做软件移植。




版权 :

如果按照源代码类型区分软件,通常被分为两类:自由软件和非自由软件。自由软件一般是不仅可以免费得到,而且公开源代码;相对应地,非自由软件则是不公开源代码。所有一切通过非正常手段获得非自由软件源代码的行为都将被视为非法。




质量 :

对于计算机而言,并不存在真正意义上的“好”的源代码;然而作为一个人,好的书写习惯将决定源代码的好坏。源代码是否具有可读性,成为好坏的重要标准。软件文档则是表明可读性的关键。




效率 :

虽然我们可以通过不同的语言来实现计算机的同一功能,但在执行效率上则存在不同。普遍规律是:越高级的语言,其执行效率越低。这也是为什么汇编语言生成的文件比用VB语言生成文件普遍要小的

操作系统的源代码是什么东西??

2,源代码开放的操作系统是

Linux操作系统,是一种计算机操作系统。Linux操作系统的内核的名字也是“Linux”。Linux操作系统也是自由软件和开放源代码发展中最著名的例子。

严格来讲,Linux这个词本身只表示Linux内核,但在实际上人们已经习惯了用Linux来形容整个基于Linux内核,并且搭配了程各种人机界面、应用和服务软件的操作系统(也被称为GNU/Linux)。基于这些组件的Linux软件被称为Linux发行版。一般来讲,一个Linux发行套件包含大量的软件,比如软件开发工具,数据库,Web服务器(例如Apache),X Window,桌面环境(比如GNOME和KDE),办公套件(比如OpenOffice.org),等等。
Linux内核最初是为英特尔386微处理器设计的。现在Linux内核支持从个人电脑到大型主机甚至包括嵌入式系统在内的各种硬件设备。
在开始的时候,Linux只是个人狂热爱好的一种产物。但是现在,Linux已经成为了一种受到广泛关注和支持的一种操作系统。包括IBM和惠普在内的一些计算机业巨头也开始支持Linux。很多人认为,和其他的商用Unix系统以及微软Windows相比,作为自由软件的Linux具有低成本,安全性高,更加可信赖的优势。



操作系是控制其他程序运行,管理系统资源并为用户提供操作界面的系统软件的集合。

操作系统大全
早期操作系统(专利保护)

TRS-DOS,ROM OS's
TI99-4
Commodore PET,64,和 VIC-20,
第一套IBM-PC
苹果电脑
Sinclair Micro和QnX等

非Unix商业操作系统

CPM操作系统
MP/M-80
UCSD P-system
Mini-FLEX
SSB-DOS
CP/M-86
DR-DOS
FreeDOS
MS-DOS
PC-DOS
Mach 由卡纳尼基梅隆大学研究
L4微内核 第二代微内核
CHORUS
Choices
Multics
OS-9
NSJ
Netware:一种网络服务器操作系统

Unix及类似系统

A/UX(Apple UNIX)
Unix
微软Xenix
ChorusOS
Cromix
UNIflex
OS-9
IBM的AIX
BSD
FreeBSD
NetBSD
OpenBSD
DragonFly BSD
PC-BSD
Digital UNIX,即之后康柏Tru64
DNIX
HP的HP-UX
GNU/Hurd
SGI的IRIX
Inferno
Linux(或称GNU/Linux)
Mac OS X
MenuetOS
Minix
OSF/1
Plan9
SCO的SCO UNIX
Sun的SunOS,即之后的Solaris
System V
Ultrix
UniCOS
麒麟操作系统(Kylin),由国防科技大学、中软公司、联想公司、浪潮公司和民族恒星公司五家单位合作研制的服务器操作系统
OS/390
z/OS
Syllable

其他

Acorn
Arthur
ARX
RISC OS
RISCiX
Amiga
AmigaOS
Atari ST
TOS
MultiTOS
MiNT

苹果电脑(Apple/Macintosh)

Apple DOS
ProDOS
Mac OS
Mac OS X
pink OS
BeOS

A/UX
Be
BeOS
BeIA


Digital/康柏(Compaq)

AIS
OS-8
RSTS/E
RSX-11
RT-11
TOPS-10
TOPS-20
VMS(后更名为OpenVMS)

IBM

OS/2
AIX
OS/400
OS/390
VM/CMS
DOS/VSE
VSE/SP
VSE/ESA
OS/360
MFT
MVT
SVS
MVS
TPF
ALCS
z/OS
PC-DOS
pink OS

微软(Microsoft)

MS-DOS
Xenix
Microsoft Bob
基于MS-DOS操作系统的Windows
Windows 1.0
Windows 2.0
Windows 3.1
Windows 95
Windows 98
Windows ME
Windows NT
Windows NT 3.5
Windows NT 4
Windows 2000
Windows XP

Windows XP SP1

Windows XP SP2
Windows XP SP3
Windows XP Media Center Edition
Windows XP Home Edition
Windows XP Tablet PC Edition
Windows XP Professional
Windows XP Professional x64 Edition
Windows Server 2003
Windows Server 2003 64-bit Edition
Windows Vista

Windows Vista SP1
Windows Vista Home Basic
Windows Vista Home Premium
Windows Vista Business
Windows Vista Ultimate
Windows Vista Enterprise
Windows Vista Starter

Windows Server 2008
Windows Server "Longhorn" Web x86
Windows Server "Longhorn" Web x64
Windows Server "Longhorn" Standard x86
Windows Server "Longhorn" Standard x64
Windows Server "Longhorn" Enterprise x86
Windows Server "Longhorn" Enterprise x64
Windows Server "Longhorn" Datacenter x86
Windows Server "Longhorn" Datacenter x64

Novell

NetWare
Unixware
SUSE Linux

NeXT

NEXTSTEP(即之后的Mac OS X)
Plan 9
Inferno

Prime Computer
Primos

西门子

BS2000 - 用于西门子公司的大型主机。
SINIX(也称Reliant UNIX) - 用于西门子公司的UNIX电脑系统。

个人电子助理(PDA)操作系统

Palm OS
Pocket PC
EPOC
Microsoft Windows CE
Linux

智能手机操作系统

Windows Mobile系列
Embedded Linux由Montavista创造,在Motorola's A760,E680等机型上使用
Mobilinux由Montavista创造
Symbian OS系列

其他操作系统

动态可扩展操作系统
MIT的Exo Kernel
华盛顿大学的 SPIN
哈佛大学的 VINO
illinois大学的Choices
ReactOS

3,编写一个操作系统要多少代码?

这个就说不定了,微软那么多人搞了几年才搞出一个操作系统,那是有界面的. 带有图形界面的操作系统代码量是非常巨大的,而linux就很小,因为纯净的linux是没有图形用户界面的, linux最小可以精简到4M大小就可以正常运行. 当然, linux加了图形用户界面后也很巨大, 相当于一个xp的安装大小吧.
一个人要想写出一个完整的操作系统,几乎是不可能的.

4,能把汇编语言源程序翻译成目标程序的程序,称为( ) A 编译程序 B 解释程序 C编辑程序 D 汇编程序

答案选择A、编译程序 编译程序也称为编译器,是指把用高级程序设计语言书写的源程序,翻译成等价的机器语言格式目标程序的翻译程序。编译程序属于采用生成性实现途径实现的翻译程序。 它以高级程序设计语言书写的源程序作为输入,而以汇编语言或机器语言表示的目标程序作为输出。编译出的目标程序通常还要经历运行阶段,以便在运行程序的支持下运行,加工初始数据,算出所需的计算结果。 扩展资料汇编语言的编译环境 用汇编语言等非机器语言书写好的符号程序称为源程序,汇编语言编译器的作用是将源程序翻译成目标程序。目标程序是机器语言程序,当它被安置在内存的预定位置上后,就能被计算机的CPU处理和执行。 汇编的调试环境总的来说比较少,也很少有非常好的编译器。编译器的选择依赖于目标处理器的类型和具体的系统平台。一般来说,功能良好的编译器用起来应当非常方便。 比如,应当可以自动整理格式、语法高亮显示,集编译、链接和调试为一体,方便实用。 参考资料来源:百度百科-编译程序 参考资料来源:百度百科-汇编语言 (面向机器的程序设计语言)

5,把源程序转换为目标程序的过程叫什么?

一、把源程序转换为目标程序的过程叫编译。
二、什么是编译(compilation,compile)
1、利用编译程序从源语言编写的源程序产生目标程序的过程。
2、用编译程序产生目标程序的动作。编译就是把高级语言变成计算机可以识别的2进制语言,计算机只认识1和0,编译程序把人们熟悉的语言换成2进制的。
3、编译程序把一个源程序翻译成目标程序的工作过程分为五个阶段:词法分析;语法分析;语义检查和中间代码生成;代码优化;目标代码生成。主要是进行词法分析和语法分析,又称为源程序分析,分析过程中发现有语法错误,给出提示信息。

6,Linux系统的所有源代码

Linux是一个开放的,自由的类Unix操作系统,它的源代码是公开的, 各个版本的Linux,包括从内核到许许多多的应用程序的源代码, 以及可执行文件都可以免费从互联网上下载。 你也可以通过光盘得到Linux系统,和一般的软件不同的是, 你可以合法的和你的朋友分享Linux光盘。很显然Linux光盘的价格不会很高, 第一,因为你可以免费从网上下载;第二,你可以和你的朋友合伙凑钱买一套Linux光盘, 再和你的朋友分享使用。 Linux和一般的软件不同,是可以和你的朋友分享的。 举个例子来说: 如果朋友家有张非常漂亮的窗子,但是这窗子是95牌的, 那么你仿制是违法的,如果这窗子是X牌的,或者说牌子是GPL, 那么你仿制就不违法。如果你不想违法,但又想要漂亮的窗子, 答案是选择自由软件。选择Linux。 Linux准确的说,是一个系统内核,它是最初在91年, 由芬兰的了不起的学生Linus Torvalds发起, 接着又有全世界的志愿者加入进来开发的。 现在有一些软件公司在做Linux的生意, 著名的有RedHat,SuSE以及Caldera等等, 这些公司发布自己的基于Linux内核的一整套的Linux系统: 这些整套的系统通常包括有:一个C语言及C++编译器,Perl脚本解释程序, 外壳Shell,图形用户界面X窗口系统,包括有X Server以及众多的应用程序等等。 这些整套的Linux系统按照习惯叫做Linux发布(distribution)。 目前使用最广泛的Linux发布是RedHat公司的RedHat Linux。 以前使用广泛的Slackware,现在也还有许多人在使用, 我自己的第一个Linux系统就是Slackware,现在我玩的是Debian, Debian和其他的Linux发布的不同之处在于:Debian是完全由志愿者开发的, 不像RedHat和SuSE,是由软件公司所支持的。 RedHat是使用最广泛的Linux发布,并且RedHat公司现在得到了Netscape, 以及Intel的支持,前景看好,根据一般的看法Redhat也是最容易上手的Linux发布。 SLackware和RedHat相比要稍微复杂一些,这主要是指软件的安装方面, 由于RedHat使用rpm打包系统,安装新软件简单到只要一行命令即可。 而Slackware往往要从源代码重新编译,稍微费事一些。 SuSE也是基于rpm打包系统,SuSE的特别之处在于它对X窗口系统的支持非常好, SuSE的吉祥物是一只绿色的蜥蜴,非常可爱。 Debian基于自己的Deb格式的打包系统,但是它也可以安装rpm软件包。 Linux可以运行在DEC公司的Alpha机上,也可以运行在Sun公司的Sparc机器上。 当然也可以运行在Intel公司的386以上的机器上。 编写的好的源代码可以不经修改的在各种不同的Linux平台上直接编译安装运行, 但是显然,不同的硬件平台之间的可执行文件是不兼容的。 但是一个特别针对Intel机器的rpm软件包是可以轻易的在for Intel的RedHat,SuSE,Debian, 以及Slackware上安装运行起来的。 RedHat,SuSE,Slackware以及Debian等各个发布之间的另一个不同是, 它们都带有自己的系统管理工具。 RedHat使用著名的控制面板+Linuxconf, Debian使用臭名昭著的dselect(为什么说臭名昭著?因为它非常难控制, 我自己只要有可能,就尽量不碰它) Slackware使用pkgtool, SuSE也有自己的管理工具。 Linux是一个开放的操作系统,它的各个部分:内核,应用程序, 库程序是有机的结合的。并不是固定的死死的,碰都不能碰。Linux的内核的版本号是XX.XX.XX格式的,由三个数字组成, 第一个数字是主版本好,第三个数字是辅版本号,中间的数字如果是奇数, 表示这是一个开发版的内核,如果是偶数,表示是一个相对稳定的,可靠的内核。 一般来讲,除非你正在研究Linux内核,或有特别的需要, 否则不要摆弄奇数版本的内核。 今天演示的第三个部分是Linux下的软件。常常有人抱怨Linux缺乏有效的软件的支持, 这在一定情况下的确如此,但是另一方面也是我们对Linux了解太少, Linux平台上现在已经有了相当多的应用软件。 并且Linux正在得到越来越多的厂家的支持。 这段时间炒的非常火的Oracle,Sybase等等大型数据库的Linux版本就是一例。 Linux下不但有类似于PhotoShop的免费的图像编辑软件:gimp, 还有免费的类似于3DS的三维设计软件:MoonLight。 并且所有这些软件,你都可以得到源代码。 Linux下的图形用户界面是基于X窗口系统的, 这也秉承了Linux的一贯传统:开放的,有机结合的。 XFree86只是图形界面的服务器,上面可以运行各种不同的窗口管理器, 现在著名的窗口管理器有AfterStep,WindowMaker,以及Enlightenment。 有的窗口管理器做得非常的漂亮,真是叫做不看不知道,一看吓一跳。 另外,如果你不喜欢花哨的窗口管理器,你可以选择wm2或者9wm, 它们只占用非常少的系统资源,我自己经常使用的就是9wm。 有了X服务器和一个窗口管理器,你就有了图形用户界面。 你就可以运行Gimp或者Moonlight了,甚至你还可以运行Doom和quake! 现在还有一批程序员正在为Linux开发免费的,开放源代码的红色警报。 对Linux的一个最主要的批评是:Linux缺乏支持。 坦白的说,就我自己作为一个个人用户来讲,我觉得Linux的支持非常的好。 我曾经在安装Debian的时候遇到几个问题, 到Debian的Mail List里发信询问了一下,几个小时后就得到了答案。

7,什么是操作系统的源代码?

源程序是指未编译的文本代码。

验证码主要是为防止暴利破解,所以需要防止图片识别。所以验证码一般情况下为书写不正规,且有随机的背景杂点,或杂线

源代码(也称源程序),是指一系列人类可读的计算机语言指令。

在现代程序语言中,源代码可以是以书籍或者磁带的形式出现,但最为常用的格式是文本文件,这种典型格式的目的是为了编译出计算机程序。计算机源代码的最终目的是将人类可读的文本翻译成为计算机可以执行的二进制指令,这种过程叫做编译,通过编译器完成。





作用 :

源代码主要功用有如下2种作用:

生成目标代码,即计算机可以识别的代码。

对软件进行说明,即对软件的编写进行说明。为数不少的初学者,甚至少数有经验的程序员都忽视软件说明的编写,因为这部分虽然不会在生成的程序中直接显示,也不参与编译。但是说明对软件的学习、分享、维护和软件复用都有巨大的好处。因此,书写软件说明在业界被认为是能创造优秀程序的良好习惯,一些公司也硬性规定必须书写。

需要指出的是,源代码的修改不能改变已经生成的目标代码。如果需要目标代码做出相应的修改,必须重新编译。





代码组合 :


源代码作为软件的特殊部分,可能被包含在一个或多个文件中。一个程序不必用同一种格式的源代码书写。例如,一个程序如果有C语言库的支持,那么就可以用C语言;而另一部分为了达到比较高的运行效率,则可以用汇编语言编写。

较为复杂的软件,一般需要数十种甚至上百种的源代码的参与。为了降低种复杂度,必须引入一种可以描述各个源代码之间联系,并且如何正确编译的系统。在这样的背景下,修订控制系统(RCS)诞生了,并成为研发者对代码修订的必备工具之一。

还有另外一种组合:源代码的编写和编译分别在不同的平台上实现,专业术语叫做软件移植。




版权 :

如果按照源代码类型区分软件,通常被分为两类:自由软件和非自由软件。自由软件一般是不仅可以免费得到,而且公开源代码;相对应地,非自由软件则是不公开源代码。所有一切通过非正常手段获得非自由软件源代码的行为都将被视为非法。




质量 :

对于计算机而言,并不存在真正意义上的“好”的源代码;然而作为一个人,好的书写习惯将决定源代码的好坏。源代码是否具有可读性,成为好坏的重要标准。软件文档则是表明可读性的关键。




效率 :

虽然我们可以通过不同的语言来实现计算机的同一功能,但在执行效率上则存在不同。普遍规律是:越高级的语言,其执行效率越低。这也是为什么汇编语言生成的文件比用VB语言生成文件普遍要小的

8,求两个源代码(操作系统,linux)


/*****************************************
ls1.c
This is my own ls
By this program you can do :
ls
ls -a
ls -l
******************************************/


/********** Header Files ***************/
#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <dirent.h>
#include <sys/stat.h>
#include <string.h>

/*** constant Define****/
#define true 1
#define false 0

/*static flag varible*/

int flag_l = 0,
flag_a = 0;



/******* Function Decleartion *********/

void do_ls ( char [] );
void print_name (char [], int);
void dostat (char *, char *);
void show_file_info( char *, char *, struct stat *);
void mode_to_letters( int , char [] );
char *uid_to_name( uid_t );
char *gid_to_name( gid_t );





void do_ls( char dirname[])
/*
List Files' Dirname;
*/
{
DIR *dir_ptr;
struct dirent *direntp;
/*This Can Explan a fullpath*/
char full_path[1024];
int total;

if ( ( dir_ptr = opendir (dirname) ) == NULL )
printf ( "myls : Cannot open \033[0;34m%s\033[0m\n", dirname );
else
{
printf ( "\033[0;34m%s \033[0m :\n", dirname );
total = 0;
while ((direntp = readdir( dir_ptr ) ) != NULL )/*get filename of dir*/
{
if ( !flag_a && direntp -> d_name[0] == '.') continue;
sprintf(full_path, "%s/%s", dirname, direntp -> d_name);/*full path=dirname + '/'+filename*/
dostat( full_path , direntp -> d_name);
++total;
}
printf("TOTAL : %d\n", total);
closedir ( dir_ptr );
}
}

void print_name (char filename[], int mode)
/* DIR can be printed in blue and others will be printed in green
*/
{
if ( S_ISDIR(mode) ) printf("\033[0;34m%s", filename); /* directory? */
else
printf("\033[0;32m%s", filename);
}

void dostat( char *full_path, char *filename )
{
struct stat info;

if ( stat(full_path, &info) == -1 ) /* cannot stat */
perror( full_path ); /* say why */
else /* else show info */
{
if(flag_l)
show_file_info( full_path, filename, &info );
else
{
print_name(filename, info.st_mode);
printf("\033[0m\n");
}
}
}

void show_file_info( char *full_path, char *filename, struct stat *info_p )
/*
* display the info about 'filename'. The info is stored in struct at *info_p
*/
{
char *uid_to_name(), *ctime(), *gid_to_name(), *filemode();
void mode_to_letters();
char modestr[11];

void mode_to_letters( info_p->st_mode, modestr );

printf( "%s" , modestr );
printf( "%4d " , (int) info_p->st_nlink);
printf( "%-8s " , uid_to_name(info_p->st_uid) );
printf( "%-8s " , gid_to_name(info_p->st_gid) );
printf( "%8ld " , (long)info_p->st_size);
printf( "%.12s ", 4+ctime(&info_p->st_mtime));

print_name(filename, info_p->st_mode );
printf("\033[0m\n");


}

/*
* utility functions
*/

void mode_to_letters( int mode, char str[] )
{
strcpy( str, "----------" ); /* default=no perms */

if ( S_ISDIR(mode) ) str[0] = 'd'; /* directory? */
if ( S_ISCHR(mode) ) str[0] = 'c'; /* char devices */
if ( S_ISBLK(mode) ) str[0] = 'b'; /* block device */

if ( mode & S_IRUSR ) str[1] = 'r'; /* 3 bits for user */
if ( mode & S_IWUSR ) str[2] = 'w';
if ( mode & S_IXUSR ) str[3] = 'x';

if ( mode & S_IRGRP ) str[4] = 'r'; /* 3 bits for group */
if ( mode & S_IWGRP ) str[5] = 'w';
if ( mode & S_IXGRP ) str[6] = 'x';

if ( mode & S_IROTH ) str[7] = 'r'; /* 3 bits for other */
if ( mode & S_IWOTH ) str[8] = 'w';
if ( mode & S_IXOTH ) str[9] = 'x';
}

#include <pwd.h>

char *uid_to_name( uid_t uid )
/*
* returns pointer to username associated with uid, uses getpw()
*/
{
struct passwd *getpwuid(), *pw_ptr;
static char numstr[10];

if ( ( pw_ptr = getpwuid( uid ) ) == NULL ){
sprintf(numstr,"%d", uid);
return numstr;
}
else
return pw_ptr->pw_name ;
}

#include <grp.h>

char *gid_to_name( gid_t gid )
/*
* returns pointer to group number gid. used getgrgid(3)
*/
{
struct group *getgrgid(), *grp_ptr;
static char numstr[10];

if ( ( grp_ptr = getgrgid(gid) ) == NULL ){
sprintf(numstr,"%d", gid);
return numstr;
}
else
return grp_ptr->gr_name;
}

/* main --->*/
main ( int ac, char *av[] )
{
int accnt;
if (ac==1) do_ls (".");
else
{
accnt = 1;
/*Get Param -l -a*/
while ( accnt < ac && (*(av+1) )[0] == '-')
{
++av;
++accnt;
switch ( (*av)[1] )
{
case 'l' : flag_l = true; break;

case 'a': flag_a = true; break;

default : break;
}
}
if (accnt == ac)
do_ls ( "." );
else
while (accnt < ac)
{
++accnt;
++av;

if ( strlen (*av) >= MAXPATHLEN )
{
printf("myls : %s is a so long name!\n", *av);
}
else
{
do_ls ( *av );
}
}
}
}

9,对那些公开源代码的软件或操作系统(如Linux)怎样查看其源代码

Linux内核的配置系统由三个部分组成,分别是: Makefile:分布在 Linux 内核源代码中的 Makefile,定义 Linux 内核的编译规则; 配置文件( config.in ):给用户提供配置选择的功能; 配置工具:包括配置命令解释器(对配置脚本中使用的配置命令进行解释)和配置用户界面(提供基于字符界面、基于 Ncurses 图形界面以及基于 Xwindows 图形界面的用户配置界面,各自对应于 Make config、Make menuconfig 和 make xconfig)。 这些配置工具都是使用脚本语言,如 Tcl/TK、Perl 编写的(也包含一些用 C 编写的代码)。本文并不是对配置系统本身进行分析,而是介绍如何使用配置系统。所以,除非是配置系统的维护者,一般的内核开发者无须了解它们的原理,只需要知道如何编写 Makefile 和配置文件就可以。所以,在本文中,我们只对 Makefile 和配置文件进行讨论。另外,凡是涉及到与具体 CPU 体系结构相关的内容,我们都以 ARM 为例,这样不仅可以将讨论的问题明确化,而且对内容本身不产生影响。 2. Makefile 2.1 Makefile 概述 Makefile 的作用是根据配置的情况,构造出需要编译的源文件列表,然后分别编译,并把目标代码链接到一起,最终形成 Linux 内核二进制文件。 由于Linux 内核源代码是按照树形结构组织的,所以 Makefile 也被分布在目录树中。Linux 内核中的 Makefile 以及与 Makefile 直接相关的文件有: Makefile:顶层 Makefile,是整个内核配置、编译的总体控制文件。 .config:内核配置文件,包含由用户选择的配置选项,用来存放内核配置后的结果(如 make config)。 arch/*/Makefile:位于各种 CPU 体系目录下的 Makefile,如 arch/arm/Makefile,是针对特定平台的 Makefile。 各个子目录下的 Makefile:比如 drivers/Makefile,负责所在子目录下源代码的管理。 Rules.make:规则文件,被所有的 Makefile 使用。 用户通过 make config 配置后,产生了 .config。顶层 Makefile 读入 .config 中的配置选择。顶层 Makefile 有两个主要的任务:产生 vmlinux 文件和内核模块(module)。为了达到此目的,顶层 Makefile 递归的进入到内核的各个子目录中,分别调用位于这些子目录中的 Makefile。至于到底进入哪些子目录,取决于内核的配置。在顶层 Makefile 中,有一句:include arch/$(ARCH)/Makefile,包含了特定 CPU 体系结构下的 Makefile,这个 Makefile 中包含了平台相关的信息。 位于各个子目录下的 Makefile 同样也根据 .config 给出的配置信息,构造出当前配置下需要的源文件列表,并在文件的最后有 include $(TOPDIR)/Rules.make。 Rules.make 文件起着非常重要的作用,它定义了所有 Makefile 共用的编译规则。比如,如果需要将本目录下所有的 c 程序编译成汇编代码,需要在 Makefile 中有以下的编译规则: %.s: %.c $(CC) $(CFLAGS) -S $< -o $@ 有很多子目录下都有同样的要求,就需要在各自的 Makefile 中包含此编译规则,这会比较麻烦。而 Linux 内核中则把此类的编译规则统一放置到 Rules.make 中,并在各自的 Makefile 中包含进了 Rules.make(include Rules.make),这样就避免了在多个 Makefile 中重复同样的规则。对于上面的例子,在 Rules.make 中对应的规则为: %.s: %.c $(CC) $(CFLAGS) $(EXTRA_CFLAGS) $(CFLAGS_$(*F)) $(CFLAGS_$@) -S $< -o $@ 2.2 Makefile 中的变量 顶层Makefile 定义并向环境中输出了许多变量,为各个子目录下的 Makefile 传递一些信息。有些变量,比如 SUBDIRS,不仅在顶层 Makefile 中定义并且赋初值,而且在 arch/*/Makefile 还作了扩充。 常用的变量有以下几类: 1) 版本信息 版本信息有:VERSION,PATCHLEVEL, SUBLEVEL, EXTRAVERSION,KERNELRELEASE。版本信息定义了当前内核的版本,比如 VERSION=2,PATCHLEVEL=4,SUBLEVEL=18,EXATAVERSION=-rmk7,它们共同构成内核的发行版本KERNELRELEASE:2.4.18-rmk7 2) CPU 体系结构:ARCH 在顶层 Makefile 的开头,用 ARCH 定义目标 CPU 的体系结构,比如 ARCH:=arm 等。许多子目录的 Makefile 中,要根据 ARCH 的定义选择编译源文件的列表。 3) 路径信息:TOPDIR, SUBDIRS TOPDIR 定义了 Linux 内核源代码所在的根目录。例如,各个子目录下的 Makefile 通过 $(TOPDIR)/Rules.make 就可以找到 Rules.make 的位置。 SUBDIRS 定义了一个目录列表,在编译内核或模块时,顶层 Makefile 就是根据 SUBDIRS 来决定进入哪些子目录。SUBDIRS 的值取决于内核的配置,在顶层 Makefile 中 SUBDIRS 赋值为 kernel drivers mm fs net ipc lib;根据内核的配置情况,在 arch/*/Makefile 中扩充了 SUBDIRS 的值,参见4)中的例子。 4) 内核组成信息:HEAD, CORE_FILES, NETWORKS, DRIVERS, LIBS Linux 内核文件 vmlinux 是由以下规则产生的: vmlinux: $(CONFIGURATION) init/main.o init/version.o linuxsubdirs $(LD) $(LINKFLAGS) $(HEAD) init/main.o init/version.o --start-group $(CORE_FILES) $(DRIVERS) $(NETWORKS) $(LIBS) --end-group -o vmlinux 可以看出,vmlinux 是由 HEAD、main.o、version.o、CORE_FILES、DRIVERS、NETWORKS 和 LIBS 组成的。这些变量(如 HEAD)都是用来定义连接生成 vmlinux 的目标文件和库文件列表。其中,HEAD在arch/*/Makefile 中定义,用来确定被最先链接进 vmlinux 的文件列表。比如,对于 ARM 系列的 CPU,HEAD 定义为: HEAD := arch/arm/kernel/head-$(PROCESSOR).o arch/arm/kernel/init_task.o 表明head-$(PROCESSOR).o 和 init_task.o 需要最先被链接到 vmlinux 中。PROCESSOR 为 armv 或 armo,取决于目标 CPU。 CORE_FILES,NETWORK,DRIVERS 和 LIBS 在顶层 Makefile 中定义,并且由 arch/*/Makefile 根据需要进行扩充。 CORE_FILES 对应着内核的核心文件,有 kernel/kernel.o,mm/mm.o,fs/fs.o,ipc/ipc.o,可以看出,这些是组成内核最为重要的文件。同时,arch/arm/Makefile 对 CORE_FILES 进行了扩充: # arch/arm/Makefile # If we have a machine-specific directory, then include it in the build. MACHDIR := arch/arm/mach-$(MACHINE) ifeq ($(MACHDIR),$(wildcard $(MACHDIR))) SUBDIRS += $(MACHDIR) CORE_FILES := $(MACHDIR)/$(MACHINE).o $(CORE_FILES) endif HEAD := arch/arm/kernel/head-$(PROCESSOR).o arch/arm/kernel/init_task.o SUBDIRS += arch/arm/kernel arch/arm/mm arch/arm/lib arch/arm/nwfpe CORE_FILES := arch/arm/kernel/kernel.o arch/arm/mm/mm.o $(CORE_FILES) LIBS := arch/arm/lib/lib.a $(LIBS) 5) 编译信息:CPP, CC, AS, LD, AR,CFLAGS,LINKFLAGS 在Rules.make 中定义的是编译的通用规则,具体到特定的场合,需要明确给出编译环境,编译环境就是在以上的变量中定义的。针对交叉编译的要求,定义了 CROSS_COMPILE。比如: CROSS_COMPILE = arm-linux- CC = $(CROSS_COMPILE)gcc LD = $(CROSS_COMPILE)ld ...... CROSS_COMPILE 定义了交叉编译器前缀 arm-linux-,表明所有的交叉编译工具都是以 arm-linux- 开头的,所以在各个交叉编译器工具之前,都加入了 $(CROSS_COMPILE),以组成一个完整的交叉编译工具文件名,比如 arm-linux-gcc。 CFLAGS 定义了传递给 C 编译器的参数。 LINKFLAGS 是链接生成 vmlinux 时,由链接器使用的参数。LINKFLAGS 在 arm/*/Makefile 中定义,比如: # arch/arm/Makefile LINKFLAGS :=-p -X -T arch/arm/vmlinux.lds 6) 配置变量CONFIG_* .config 文件中有许多的配置变量等式,用来说明用户配置的结果。例如 CONFIG_MODULES=y 表明用户选择了 Linux 内核的模块功能。 .config 被顶层 Makefile 包含后,就形成许多的配置变量,每个配置变量具有确定的值:y 表示本编译选项对应的内核代码被静态编译进 Linux 内核;m 表示本编译选项对应的内核代码被编译成模块;n 表示不选择此编译选项;如果根本就没有选择,那么配置变量的值为空。 2.3 Rules.make 变量 前面讲过,Rules.make 是编译规则文件,所有的 Makefile 中都会包括 Rules.make。Rules.make 文件定义了许多变量,最为重要是那些编译、链接列表变量。 O_OBJS,L_OBJS,OX_OBJS,LX_OBJS:本目录下需要编译进 Linux 内核 vmlinux 的目标文件列表,其中 OX_OBJS 和 LX_OBJS 中的 "X" 表明目标文件使用了 EXPORT_SYMBOL 输出符号。 M_OBJS,MX_OBJS:本目录下需要被编译成可装载模块的目标文件列表。同样,MX_OBJS 中的 "X" 表明目标文件使用了 EXPORT_SYMBOL 输出符号。 O_TARGET,L_TARGET:每个子目录下都有一个 O_TARGET 或 L_TARGET,Rules.make 首先从源代码编译生成 O_OBJS 和 OX_OBJS 中所有的目标文件,然后使用 $(LD) -r 把它们链接成一个 O_TARGET 或 L_TARGET。O_TARGET 以 .o 结尾,而 L_TARGET 以 .a 结尾。