1 1为什么等于2,1+1为什么等于2?
本文目录索引
1,1+1为什么等于2?
1+1=2 是初等数学范围内的数值计算等式。 当某个原始人第一个意识到1+1=2,进而认识到两个数相加得到另一个确定的数时,这一刻是人类文明的伟大时刻,因为他发现了一个非常重要的性质——可加性。这个性质及其推广正是数学的全部根基,它甚至说出数学为什么用途广泛的同时,告诉我们数学的局限性。 人们知道,世界上存在三类不同的事物。一类是完全满足可加性的量。比如质量,容器里的气体总质量总是等于每个气体分子质量之和。对于这些量,1+1=2是完全成立的。 扩展资料: 皮亚诺公理,也称皮亚诺公设,是数学家皮亚诺(皮阿罗)提出的关于自然数的五条公理系统。根据这五条公理可以建立起一阶算术系统,也称皮亚诺算术系统。 皮亚诺的这五条公理用非形式化的方法叙述如下: ①0是自然数; ②每一个确定的自然数 a,都有一个确定的后继数x' ,x' 也是自然数(一个数的后继数就是紧接在这个数后面的数,例如,1的后继数是2,2的后继数是3等等); ③如果b、c都是自然数a的后继数,那么b = c; ④0不是任何自然数的后继数; ⑤设S是自然数集的一个子集,且(1)0属于S;(2)如果n属于S,那么n'也属于S。 (这条公理也叫归纳公理,保证了数学归纳法的正确性) 更正式的定义如下: 一个戴德金-皮亚诺结构是这样的一个三元组(X, x, f),其中X是一个集合,x为X中一个元素,f是X到自身的映射,且符合以下条件: x不在f的值域内; f为一个单射; 若x∈A 且 " a∈A 蕴涵 f(a)∈A",则A=X。 参考资料:1+1=2(数学公式)_百度百科
2,1加1为什么等于2???
从数学角度来看,1+1=2是一个基础假设,这是数学的基础,没有它,所有定理都无法站住脚
有很多答案,可以理解为:
⒈一杯水加一杯水还是一杯水。
⒉这就是相对的,1+1中的一,是相对原本的“单位”或称“量”,“=2”中的“2”也是。而你们所说的等于“1”,这个“1”就不是与原本的单位来定义的,是新的“单位”
⒊1+1>2,比如说,一件事情你和别人团结合作,就可能大于2,是你一个自己花俩倍的时间所完成不了的。也可能小与2,你可以花小与俩倍的时间就能完成
⒋并不是所有的努力都能换来回报
⒌一个白天加一个黑夜 等于一整天 不等于两天
⒍即使人们希望一加一等于二,但未必能将事情做得完美,误差是绝对的,计划赶不上变化
⒎没有任何事都是绝对的存在,有些东西表面上十分相似,如果不按特定的实际情况去随意组合,有时候会因为很不合适而导致弄巧成拙,收不到想当然的结果
3,为什么1加1等于2,不是11?
根据皮亚诺自然数公理:1. 0属于N。2. 若x属于N,则x有且只有一个后继x'。3. 对任一个x属于N,皆有x'不等于0。4. 对任意x,y属于N,若x不等于y,则x'不等于y'。5. (归纳公理)设M包含于N,若0属于M,且对任意x属于M都有x'属于M,则M=N。根据以上公理:将0的后继记为1,1的后继记为2,即0'=1,1'=2。根据加法的定义:存在唯一的一个二元运算+:NxN→N满足:x+0=x且x+y'=(x+y)'。将y=0代入x+y'=(x+y)'得:x+0'=(x+0)',由x+0=x以及0'=1得:x+1=x'将x=1代入上式得:1+1=1'又由1'=2得,1+1=2。因此,1+1=2。 皮亚诺公理,也称皮亚诺公式,是数学家皮亚诺(皮阿罗)提出的关于自然数的六条公理系统。根据这六条公理可以建立起一阶算术系统,也称皮亚诺算术系统。 加法性质: 1+1=2 1 + 1= 0’ + 1 (根据自然数的公理)= (0 + 1)’(根据加法定义Ⅱ)= 1’ (根据加法定义Ⅰ)= 2 (根据自然数的公理) 结合律 证明对任意的a,下述命题成立: ∀b,c,(a+b)+c=a+(b+c)。 当a=0时, (0+b)+c=b+c(加法定义Ⅰ) =0+(b+c)(加法定义Ⅰ),命题成立。 假设命题对a成立,则对a': 任给b,c,有(a'+b)+c=(a+b)'+c=((a+b)+c)'=(a+(b+c))'=a'+(b+c),命题也成立。 由公理Ⅴ,命题成立。由此即得结合律a+(b+c)=(a+b)+c。
4,1+1为什么等于2??
1+1=2 是初等数学范围内的数值计算等式。 当某个原始人第一个意识到1+1=2,进而认识到两个数相加得到另一个确定的数时,这一刻是人类文明的伟大时刻,因为他发现了一个非常重要的性质——可加性。这个性质及其推广正是数学的全部根基,它甚至说出数学为什么用途广泛的同时,告诉我们数学的局限性。 人们知道,世界上存在三类不同的事物。一类是完全满足可加性的量。比如质量,容器里的气体总质量总是等于每个气体分子质量之和。对于这些量,1+1=2是完全成立的。 扩展资料 英国著名的科学杂志《物理世界》此前举行了一场别开生面的评选活动,邀请世界各地的读者选出自己心目中最伟大、最喜爱的公式、定理或定律。结果,让很多人意外的是,1+1=2这个连小学生都知道的基本数学公式不仅入选,而且还高居第一。 一个加拿大读者说出了他的理由:“这个最简单的公式有着一种妙不可言的美感。”此次评选活动的主持者则这样评价到:“一个伟大公式的力量不仅论述了宇宙的基本特性并传达了标志性的信息,而且还在尽力孕育出更多自然界。 参考资料来源:百度百科-1+1=2
5,讨论1+1为什么等于2这个问题意义在哪里?
1+1为什么等于2这个问题是是简写的,问题全称为任一大于2的偶数都可写成两个质数之和。 人们习惯把命题"任一充分大的偶数都可以表示成为一个素因子个数不超过a个的数与另一个素因子不超过b个的数之和"记作"a+b",所以哥德巴赫猜想简称为1+1为什么等于2,而不是小学数学的1+1=2。 哥德巴赫猜想对人类社会没有重大推动作用,但是对于数学史的推动是存在的,数学猜想并不是每一个都有着重大意义像近代的角谷猜想一样。 扩展资料:哥德巴赫猜想证明进程: 20世纪的数学家们研究哥德巴赫猜想所采用的主要方法,是筛法、圆法、密率法和三角和法等等高深的数学方法。解决这个猜想的思路,就像“缩小包围圈”一样,逐步逼近最后的结果。 1920年,挪威数学家布朗证明了定理“9+9”,由此划定了进攻“哥德巴赫猜想”的“大包围圈”。 所谓“9+9”,翻译成数学语言就是:“任何一个足够大的偶数,都可以表示成其它两个数之和,而这两个数中的每个数,都是9个奇质数之积。” 从这个“9+9”开始,全世界的数学家集中力量“缩小包围圈”,当然最后的目标就是“1+1”了。 1924年,德国数学家雷德马赫证明了定理“7+7”。很快,“6+6”、“5+5”、“4+4”逐一被攻陷。1957年,中国数学家王元证明了“2+3”。1962年,中国数学家潘承洞证明了“1+5”,同年又和王元合作证明了“1+4”。1965年,苏联数学家证明了“1+3”。 1966年,中国著名数学家陈景润攻克了“1+2”,也就是:“任何一个足够大的偶数,都可以表示成两个数之和,而这两个数中的一个就是奇质数,另一个则是两个奇质数的积。”这个定理被世界数学界称为“陈氏定理”。 由于陈景润的贡献,人类距离哥德巴赫猜想的最后结果“1+1”仅有一步之遥了。但为了实现这最后的一步,也许还要历经一个漫长的探索过程。有许多数学家认为,要想证明“1+1”,必须通过创造新的数学方法,以往的路很可能都是走不通的。 参考资料来源:百度百科-哥德巴赫猜想 百度百科-世界三大数学猜想
6,1+1为什么等于2?
1+1的证明: ∵1+1的后继数是1的后继数的后继数,即3, ∴2的后继数是3。 根据皮亚诺公理③,可得:1+1=2。 1+1=2 是初等数学范围内的数值计算等式。 当某个原始人第一个意识到1+1=2,进而认识到两个数相加得到另一个确定的数时,这一刻是人类文明的伟大时刻,因为他发现了一个非常重要的性质——可加性。这个性质及其推广正是数学的全部根基,它甚至说出数学为什么用途广泛的同时,告诉我们数学的局限性。 人们知道,世界上存在三类不同的事物。一类是完全满足可加性的量。比如质量,容器里的气体总质量总是等于每个气体分子质量之和。对于这些量,1+1=2是完全成立的。 扩展资料 一个戴德金-皮亚诺结构是这样的一个三元组(X, x, f),其中X是一个集合,x为X中一个元素,f是X到自身的映射,且符合以下条件: x不在f的值域内; f为一个单射; 若x∈A 且 " a∈A 蕴涵 f(a)∈A",则A=X。 该结构所引出的关于自然数集合的基本假设: 1、N(自然数集)不是空集; 2、N到N内存在a→a'的一一映射; 3、后继元素映射的像的集合是N的真子集,事实上即N\{1}(或N\{0}); 4、若N的子集P既含有非后继元素的元素,又有含有子集中每个元素的后继元素,则此子集与N相等。 参考资料:百度百科-1+1=2(数学公式)